Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Flooding is one of the most frequent natural hazards and causes more economic loss than all the other natural hazards. Fast and accurate flood prediction has significance in preserving lives, minimizing economic damage, and reducing public health risks. However, current methods cannot achieve speed and accuracy simultaneously. Numerical methods can provide high-fidelity results, but they are time-consuming, particularly when pursuing high accuracy. Conversely, neural networks can provide results in a matter of seconds, but they have shown low accuracy in flood map generation by all existing methods. This work combines the strengths of numerical methods and neural networks and builds a framework that can quickly and accurately model the high-fidelity flood inundation map with detailed water depth information. In this paper, we employ the U-Net and generative adversarial network (GAN) models to recover the lost physics and information from ultra-fast, low-resolution numerical simulations, ultimately presenting high-resolution, high-fidelity flood maps as the end results. In this study, both the U-Net and GAN models have proven their ability to reduce the computation time for generating high-fidelity results, reducing it from 7–8 h down to 1 min. Furthermore, the accuracy of both models is notably high.more » « less
-
Abstract Extensive prior work has provided methods for the optimization of routing based on weights assigned to travel duration, and/or travel cost, and/or the distance traveled. Routing can be in various modalities, such as by car, on foot, by bicycle, via public transit, or by boat. A typical method of routing involves building a graph comprised of street segments, assigning a normalized weighted value to each segment, and then applying the weighted-shorted path algorithm to the graph in order to find the best route. Some users desire that the routing suggestion include consideration pertaining to the scenic-architectural quality of the path. For example, a user may seek a leisure walk via what they might deem as visually attractive architecture. Here, we are proposing a method to quantify such user preferences and scenic quality and to augment the standard routing methods by giving weight to the scenic quality. That is, instead of suggesting merely the time and cost-optimal route, we will find the best route that is tailored towards the user’s scenic quality preferences as an additional criterion to the time and cost. The proposed method uniquely weighs the scenic interest or residential street segments based on the property valuation data.more » « less
-
A combined sewer system (CSS) collects rainwater runoff, domestic sewage, and industrial wastewater in the same pipe. The volume of wastewater can sometimes exceed the system capacity during heavy rainfall events. When this occurs, untreated stormwater and wastewater discharge directly to nearby streams, rivers, and other water bodies. This would threaten public health and the environment, contributing to drinking water contamination and other concerns. Minimizing sewer overflows requires an optimization method that can provide an optimal sequence of decision variables at control gates. Conventional strategies use classical optimization algorithms, such as genetic algorithms and pattern search, to find the optimal sequence of decision variables. However, these conventional frameworks are very time-consuming, and it is almost impossible to achieve near real-time optimal control. This paper presents a faster optimization framework by using a new optimal control tool: reinforcement learning. The environment (flow modeler) used in this paper is the numerical model: Environmental Protection Agency’s Storm Water Management Model (EPA SWMM) to ensure the accuracy of environment response. The reward function is constructed based on the calculated water depth and overflow rate from SWMM. The process keeps minimizing the reward function to obtain the optimal flow release sequence at each controlled orifice gate. The combined sewer system (CSS) of the Puritan-Fenkell 7-mile facility in Detroit, MI, is chosen as the case study.more » « less
-
In the past few years, automatic building detection in aerial images has become an emerging field in computer vision. Detecting the specific types of houses will provide information in urbanization, change detection, and urban monitoring that play increasingly important roles in modern city planning and natural hazard preparedness. In this paper, we demonstrate the effectiveness of detecting various types of houses in aerial imagery using Faster Region-based Convolutional Neural Network (Faster-RCNN). After formulating the dataset and extracting bounding-box information, pre-trained ResNet50 is used to get the feature maps. The fully convolutional Region Proposal Network (RPN) first predicts the bounds and objectness score of objects (in this case house) from the feature maps. Then, the Region of Interest (RoI) pooling layer extracts interested regions to detect objects that are present in the images. To the best of our knowledge, this is the first attempt at detecting houses using Faster R-CNN that has achieved satisfactory results. This experiment opens a new path to conduct and extent the works not only for civil and environmental domain but also other applied science disciplines.more » « less
An official website of the United States government

Full Text Available